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Note 

On Evaluating Strategies for the 

Computation of DWBA Integrals 

1. INTRODUCTION 

Heavy ion reaction studies require exact calculations of transition amplitudes which 
involve two- or higher-dimensional radial integrals. The computation of these integrals 
is quite time-consuming because of two factors: the numerical approximation of the 
integral itself, and the number of such integrals required. Most distorted-wave-Born- 
approximation (DWBA) calculations follow the method of Austern et al. [l] or are 
adaptations, modifications, or approximations of it (see, for example, Refs. [2-4]). The 
inclusion of recoil effects, which is essential for high-energy heavy-ion interactions [4], 
affects both the dimensionality of the radial integrals, as well as the number of integrals 
required. The latter is due to the selection rules for angular momenta, introduced by 
the inclusion of recoil [3]. Because of computer storage limitations, the complete 
processing of a reaction requires the computation of various functions (such as bound 
state and optical model wave functions) and their storage in permanent files [3]. 
When the radial integrals are computed, the selection rules determine which table of 
function values must be retrieved from files. Since the tables needed for a specific 
integral are not necessarily stored sequentially, these reading operations contribute 
significantly to the overall computation time. 

In this paper we present a method for analyzing the complexity of algorithms, and 
in particular of those involved in DWBA calculations. We explore certain compu- 
tational schemes and show how they can be analyzed and evaluated, a priori, by 
determining for each one of them a “cost.” Our purpose is not to give computational 
recipes for certain specific reaction theories, but to demonstrate the usefulness of 
evaluating computational schemes before choosing one for implementation, and to 
provide a method for doing it. For this reason we chose to illustrate this method by 
analyzing the computation of radial integrals for knock-out reactions, according to 
a rather simple model given by Park [5]. 

In Section 2 we describe a method of analysis by applying it to obtain the complexity 
for a straightforward “simple-minded” computation of radial integrals. In Section 3 
we analyze two other strategies and we discuss the effect of rearranging certain of their 
subalgorithms. 
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2. ANALYSIS OF COMPUTATIONAL SCHEMES 

We shall compare computational methods by obtaining for each of them an 
estimate of a quantity that is proportional to the computation time of the corre- 
sponding algorithms. We emphasize that we are interested in an a priori analysis of a 
computational method and not in an evaluation of the actual execution time. For 
this reason, it will suffice to define our quantity in terms of a model of computation 
which, although oversimplified, incorporates all the features of the method, but 
excludes any computation related to the control and management of the execution of 
the algorithm. We shall define as a straight-line algorithm [6] a sequence of assignment 
statements of the form A t BwC, A +- W(B), or A +- F(B). Here A, B, and C are 
variable names, constants or subscripted variables, w  is one of the operators + , -, * 
or /, W represents an input (read) operation from some external file, and 9 represents 
a function evaluation which for some reason we may prefer not to express explicitly 
in terms of operations w. We assign to each operation, including the function 9, 
a cost parameter the value of which is proportional to the execution time for that 
operation or for the function, respectively. We define as the complexity of a straight- 
line algorithm the sum of the cost parameters of all assignment statements that 
constitute the algorithm. For the sake of notational convenience, instead of writing 

we shall write Ai +- BioiCi (i = 1, 2 ,..., n). 
We consider now a direct knock-out reaction, which we represent symbolically as 

Here a and b are the incident and outgoing particles (or clusters), respectively, A and 
B are the target and residual nuclei, respectively, and C is a heavy closed shell core 
which is considered to be part of the cluster structure of both the target and the 
residual nuclei. According to the model considered here, the core is assumed infinitely 
heavy and the radial integrals associated with the DWBA transition amplitude have 
the form [5] 

I(& I’, 1”; j, j’; L, L’) = lom 6 ra2dr, r,Vr, 4,&J Rn*,l,hJ 

where {n,L,(ra) and EnL(rb) are the radial parts of the bound state wavefunctions for 
particles a and b, respectively, and R,&-,) and R,T~ (rb) are elastic scattering wave- 
functions which are solutions of the radial Schrodinger equation with optical poten- 
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tials. The functions fL*(r, , TJ are the expansion coefficients of the direct interaction 
which for simplicity we consider here spin independent and therefore we can write 

(2.2) 

The Schrodinger equation can be solved numerically easier, if it is written in the form 
rs, 91 

d(r) = A(r) u(r), (2.3) 

where u(r) = T+(Y). Here $(r) is the solution of the Schrodinger equation in its 
canonical form. If each one of the wavefunctions of the integrand of (2.1) is expressed 
in terms of solutions of the corresponding modified equations of the form (2.3) the 
factors ra2 and rb2 are removed from (2.1). For the sake of simplicity we change the 
notation in an obvious manner, and we write the integral (2.1) in the form 

where 

T m klvn = 
ss 

m  g*(x) GdX) h(y) f&%‘)fm(x, Y>  dx & 
Ra 4, 

In practice the integral zklm is taken equal to the first term of (2.4) after choosing 
appropriate values for R, and Rb so that / Tkrm 1 < e, where e > 0 is some acceptable 
bound for the truncation error committed. The values of R, and Rb depend on the 
potentials of the Schrodinger equations used to generate the wavefunctions of the 
integrand of (2.4). 

In order to approximate the integral (2.4), we apply a product rule [7], either of the 
Newton-C&es type or of the Gauss type, and we obtain 

where E is the appropriate error term. The vectors (cl g*(xr),..., c, g*(x,))r and 
(c,Wd,..., cbh(xb))T can be computed and stored once and for all in main storage. 
We shall represent their components by cg$ and chj , respectively. Likewise the vectors 
(Xl ,--*, xJT and ( y1 ,..., y,)r are stored in main storage. Their values may be equally 
spaced or chosen according to the requirements of Gaussian integration. The optical 
model wavefunctions are stored as the vectors Gk = (GkI, Gk, ,..., Gka)T and 
K = (Hz, 3 fJ,, ,..‘, HLb)T in permanent (external) files and are retrieved by specifying 
the orbital angular momentum quantum number (k or I). Since a vector, e.g., Gk , 
is stored in internal form as one record, the corresponding input operation will be 
written in the form Gk + g(k). For simplicity we shall consider only spinless particles. 
The inclusion of spin simply doubles the number of wavefunctions and multiplies 
the number of integrals to be computed, by a constant factor. 
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Our objective is the discussion of the computation process of the sums in Eq. (2.5). 
A straight-line algorithm for the numerical evaluation of one integral Iklm according 
to this equation is the following: 

1. G,+%(k) 
2. HI +- L%(l) 
3. IJ& - 0 
4. sto 
5. p + Cgi * Gki 
6. q + chj * Hlj 
7. S + F(m, xi, YJ 
8. 4+4*f 

9. scsfq 
10. 

I 

(j q 

t +-PCS 
11. Zam+Ikhn+ t 

zz I, 2,..., 

(2.6) 

We shall represent the cost parameters for the operations +, *, B’, and F, by 01, p, p, 
and f, respectively. We shall assign a zero cost parameter to initializations of the form 
s +- 0. The complexity for the above algorithm can be easily found to be 

T(1)=2p+{(2EL+ol+f)b+2CL+c”}u 

=2p+(2~+cu+f)ab+(2Cl+~)a. (2.7) 

The complexity for the entire computation, i.e., for all the values of k, I, and m, 
compatible with the selection rules, is 

(2.8) 

where N is the total number of integrals, which can be obtained in principle from the 
relation 

K L mllax 

N=CC c 1 
k=O 1=0 m=n~,,,~,, (2.9) 

subject to the constraints k + m + B = even and I+ m + A = even. Here A and B 
are the quantum numbers for the bound state functions, denoted in (2.1) by L and L’, 
respectively [5]. From the triangle relations that must be satisfied simultaneously by 
(k, m, B) and (l, m, A) we obtain 

mmn = max(l k - B I, I I - A I), mmax = min(k + B, I + A). (2.10) 

Due to these selection rules the summation of (2.9) is not easy to evaluate. We can, 
however, obtain a rather conservative bound on N [lo] which is 

N < floor@@ + 1)2(L + 1) - $X(X + 1)(X + 2)). (2.11) 
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Here h = 2 max(A, B), floor(x) = integ(x) and we have taken K = L. Relation (2.11) 
shows that N = O(L), i.e., the number N of integrals is linear in the largest number 
of partial waves; however, although the parameter X is usually small, the factor 
(X + 1)2/2 that multiplies L + 1 can make the number of integrals quite large. 
Combining (2.7) and (2.11) and retaining the dominant terms only, we obtain 

T(N) = O(pX2L + f X2Ln2), (2.12) 

where n = max(a, b). Knowledge of the precise values of p and f is not important here, 
especially since this is an a priori analysis. One may conjecture that p may be larger 
than f (say p = fn2) and therefore both terms should be retained in (2.12). In any case, 
comparisons of the relative efficiencies of computational schemes can be made by 
using relation (2.12) without any assumption on p and$ For example, a hypothetical 
method of time complexity O(pX2L +fh2Ln) would be definitely superior to the 
method based on algorithm (2.6), whereas a method of time complexity 
O(pX2L2 + f X2Ln2) would be inferior. 

Algorithm (2.6) for the computation of one Z kiln value is nested within the three 
loops controlled by k, I, and m. One may wonder whether removal of the read 
operations 1 and 2 from the inner loop would improve the complexity of the overall 
computation. The result can be seen to be 

Expansion of this expression and use of the selection rules implied by the summation 
process (2.9) yield the result 

T(N) = O(pL2 + f h2Ln2) (2.13) 

which cannot be considered an improvement over (2.12) since h is definitely smaller 
than L. On the contrary, for usual values of L, the cost implied by (2.13) is much 

1 Yb 
12) 

f  rn 

yb, 
f(3) 
m 

f(l) 
m 

Y, 
‘XI ‘-3 ‘a 

FIG. 1. Formulas (2.5) and (3.1) are strictly equivalent. One can be convinced by noticing the 
way the interval [x1 , x.1 x l-y1 , ya] is partitioned. The additional notation f$, is being used to help 
keep in mind this partition. 



276 STYLIANOS D. DANIELOPOULOS 

higher than that implied by (2.12). This is due to the fact that by removing the read 
operation from the m-loop, we removed them also from the scope of the selection rules, 
and therefore they are executed for each value of k and 1. 

3. IMPROVED STRATEGIES 

The fact that in formula (2.12)fmultiplies the product Ln2, which can be very large, 
indicates that the computing time for the execution of the function 9 greatly affects 
the complexity of the whole computation. From algorithm (2.6) it can be seen that 
the same value of this function is computed several times. One obvious way to decrease 
the computation time is to compute and store all function values fm(Xi , yj) so that 
repetitions can be avoided. This, however, requires too much storage. A compromise 
can be reached by choosing two integers a, < a and bl < b, and rewriting formula 
(2.5) for the numerical evaluation of the integral Iklm , in the form (see Fig. 1) 

I klm = $I ‘dGk(xi) ji ‘-%~:b’~)f!?(-% 3 &‘> 

+ %gl ‘dG&d i Ch%(Yj) f2)(& 9 Yi> 
?=bl 

+ i ‘&%c(Xi) i C&f&%$) fi,%-G > Yj), (3.1) 
i=a, j=l 

where f;‘(x, J’> = fm(X, .Y> for XI < X d Xal > YI < Y < Ybl , f:‘(x, I’> = fm(& J’) 

for X1 < X < Xal, ybI d Y d yb , and fE’(X, Y) = fm(X, y) for Xal < X < X,, 
y1 < y < yb . The function values jz’(xi , yj) (i = 1, 2 ,..., al , j = 1, 2 ,..., b, , 
m = 0, l,..., min(K + B, L + A)) are computed only once and stored as a three- 
dimensional array with elements Fmii . However, the function valuesfg’(xi , yj) and 
fg’(xi, yi) are evaluated as needed. Thus the first summation of Eq. (3.1) is obtained 
with an algorithm that is analogous to (2.6) in which, however, statement 7 is removed 
and statement 8 is replaced by the statement q c q * Fmij . The values of the elements 
Fmij are computed by the straight-line algorithm 

! 

m = 0, l,..., min(K + B, L + A) 

F,ij +- *‘fm, xi , vd i = 1, 2,..., a, 
j = 1, 2,..., b, 

that is executed before the main algorithm. The two additional summations of Eq. (3.1) 
are computed with algorithms which are essentially similar to (2.6). The complexity 
for this computational scheme is easily obtained as in the case discussed in Section 2, 
and the corresponding bound is given by 

T(N) = O(pPL + fPL(n2 - q”) + j-L@), (3.2) 
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where n, E max(a, , b,). The improvement is due to the fact that the product fh2L 
is not multiplied anymore by n2 but by n2 - ni 2 A far greater benefit can be derived . 
from this method if the choice of integers a, and bl can be made so that x,~ N R, 
and J++ N Rb for a comprehensive class of nuclei and incident particle energies. 
We shall call such problems “medium size problems.” In these cases Eq. (3.1) contains 
only the first summation and the corresponding complexity is 

T(N) = O(ph2L + fLn12) (3.3) 

which represents a substantial improvement over both (2.12) and (3.2). Therefore, 
a system could be designed which would give a fast computation for medium size 
problems but would take additional time for large size problems. 

An even better computational scheme results when, instead of using k and 1 as 
independent parameters, m is made independent, and k and 1 dependent through the 
selection rules. Indeed, from the triangle relations d(k, m, B) and d(l, m, A) imposed 
by the presence of the appropriate Clebsch-Gordan coefficients in the transition 
amplitude for the nuclear reaction [5], we obtain 

lm- Bl<k<m+B, 

[m--Al <l,<m+A 

from which we deduce that for a given value of m there correspond several values of 
the parameters (or subscripts) k and 1. Specifically, there are at most 2B + 1 values 
of k and 2A + 1 values of I. It is, therefore, advantageous to use two matrices of 
sizes (2B + 1) x a and (2A + 1) x b, in order to store the vectors G,(x) (I m - B / < 
k < m + B) and H,(y) (1 m - A / < I < m + A), respectively, for as long as they 
are needed, so that repeated read operations may be avoided. As the value of m is 
incremented, one of the vectors Gk(x) is deleted and a new one is read into the 
aforementioned matrix. Something similar happens to the vectors H,(y). In practice, 
this data manipulation is conveniently achieved by operating the two storage matrices 
as circular queues [ll] in which one vector constitutes one node (or record) of the 
queue [lo]. The function values fm(xi , ui) do not have to be stored, since m is an 
independent parameter and takes its values sequentially. Only a matrix F of size a x b 
is needed for storing the function values of fm(x, y) for a given value of m. Writing a 
straight-line algorithm for this computational scheme is a rather straightforward task 
[IO] and we shall not do it here. The complexity for such an algorithm is found to be 

To=fab+2p+~ CL+ ~G9+4+p+a: i=l j=l !  

+ 2pB + P(M - 2B) + 2pA + p(M - 2A) 

1 
m+A 

pa + C ((2,~ + 4ab + (CL + 44 5 
Z=l?WAl I !  
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where 

A4 = max(K + B, L + A) Q max(K, L) + max(A, B). 

Using the same definitions and bounds as before, we obtain 

T(N) = O(pL + fLn”) (3.4) 

which constitutes an improvement over all previous cases because the parameter X2 
does not appear as a multiplier either of pL or offLn2. For large values of n (e.g., 
n > IOO), the first term in all complexity formulas can be neglected. At any rate, it is 
the absence of the factor X2 that makes the difference in the fourth case. 

In order to obtain a feeling for how the four complexity formulas (2.12), (2.13), 
(3.2), and (3.4) compare, we shall assign certain plausible numerical values to the cost 
parameters. Thus we take E.L = 1 and p = 1000. The value off depends on the form 
of the interaction potential and on the method of computation of the expansion 
coefficients in (2.2). We have estimated that a value of 10 is neither large nor small. 
We take X = 4, which means that at least one of the bound states (initial or final) has 
the orbital angular momentum quantum number equal to 2, and nl/n = 70/100. 
Then the four complexity formulas become, respectively, 

T(N) = O(l6OOOL + 160Ln2), 
T(N) = O(1000L2 + 160Ln2), 
T(N) = O(l6OOOL + 85Ln2), 
T(N) = 0(1000L + lOLn2). 

The two extreme cases differ by a factor of 16 (i.e., X2) which is substantial. 

4. CONCLUSIONS 

The discussion of the previous section suggests that the improvements in efficiency 
of the last computational scheme are significant enough (especially for higher values 
of the quantum numbers L and L’) to warrant the development of a program based 
on this scheme. Furthermore, it is correct to conjecture that in computations such as 
DWBA analysis of nuclear reactions or similar ones, it is advisible to avoid compu- 
tational schemes that use several independent parameters (provided that this is 
possible). However, the most important conclusion from this discussion is the need 
for a theoretical analysis of the computational scheme used to solve a physical problem 
Obtaining the analytic expressions that represent the solution to a problem, and even 
identifying some numerical method for handling those expressions, does not con- 
stitute the complete solution. An a priori theoretical analysis of the whole computa- 
tional process can provide invaluable information, concerning the relative costs of 
certain parts of the computation, the structuring of data, the retrieval of data from 
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files, etc. The method of analysis used in this paper is very simple, but nevertheless 
sufficient to allow an evaluation of a computational scheme and the making of 
appropriate design decisions. 
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